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Abstract

We show that characteristics-based portfolio choice requires a short-sale constraint for rea-
sonable levels of leverage. In addition to the introduction of our new constraint we include 12
characteristics to our study, thereby extending the classical size, book-to-market and momentum
paradigm. We discuss the sensitivity of key indicators to the choice of characteristics, to risk aver-
sion and to estimation sample size showing that constrained policies are much less responsive to
these parameters than their unconstrained counterparts. Finally, in the case of quadratic utility, we
derive a semi-closed analytical form for the portfolio weights. Overall, we find that the constraint
effectively reduces negative weights, decreases both volatility and transaction costs of the portfolios
and decreases the risk of model misspecification.

JEL classification: C61, G11.

1 Introduction

The topic of characteristic-based investing is classical in Modern Portfolio Theory and gained
popularity after Fama and French (1992) showed that the size and book-to-market ratio of
companies are strong drivers of the cross-sectional differences in future returns. In contrast
to the intuitive way of gaining factor exposure by selecting stocks with the desired attributes
and weighting them equally or proportionally to value (i.e. market capitalization) or other
accounting quantities, new methods have recently blossomed. These techniques allocate wealth
according to synthetic measures, as in Walkshäusl and Lobe (2010), Arnott et al. (2005) and
Asness et al. (2013), or rely on more systematic approaches based on optimization procedures.1

Our article introduces a new short-sale2 constraint into these optimization schemes which sig-
nificantly reduces the policy’s negative weights and, hence, makes it applicable for a broad
group of investors.

The idea of combining firm characteristics with systematic optimization procedures brings
several advantages for investors. One of the main practical benefits of focusing on characteristics
in optimization schemes is the reduction in overall dimensionality that is often problematic when
the investment universe is large. For instance, a classical minimum variance optimization for the
∗Guillaume Coqueret is with EDHEC Business School at Nice, France. Manuel Ammann and Jan-Philip Schade are

with University of St. Gallen, Switzerland. We are grateful to Jens Jackwerth and seminar participants at the Finance
Seminar in Constance and St. Gallen for helpful comments and suggestions.

1See for instance Brandt et al. (2009), Hand and Green (2011), Hjalmarsson and Manchev (2012) and Boudt et al.
(2014).

2In the following we will use the terms ’short-selling’ and ’leverage’ interchangeably.
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S&P 500 universe requires the computation of more than 125,000 covariances. Furthermore, by
basing their investment decisions on risk factors, investors can transfer their believes in different
return drivers directly into their portfolio weights. Consequently, such an approach enables
each investor to create investment strategies according to his taste. An intuitive framework for
such an implementation was proposed by Brandt et al. (2009) who suggest to model optimal
portfolio weights by deviating from an initial benchmark using a linear function of normalized
characteristics. This is achieved by optimizing the expected utility of the future wealth with
respect to the loadings of the characteristics. However, we find that this approach has several
so far unsolved caveats.

First, similarly to the classical Markowitz (1952) mean-variance portfolios, the characteristics-
based mean-variance portfolios are usually very leveraged: the optimal solutions imply large
negative weights and many stocks must be shorted. For example Brandt et al. (2009) report
more than 40% of negative weights on average in their empirical results. In practice, such levels
of leverage are unrealistic, especially because many investors have long-only policies. A possi-
ble solution, advocated by Brandt et al. (2009) is to set negative positions to zero and rescale
the weights. Given that this approach truncates the investable set by approximately 40%, it
seems sub-optimal. Apart of the high levels of leverage, unconstrained portfolios are known to
generate notoriously high instability, asset turnovers, and large transaction costs (for instance,
Brandt et al. (2009) display turnovers above 100%.). Second, the choice of firm characteristics
used in the allocation process is essential. When they are processed into metrics computed at
the firm level, they are usually numerous. For example, Arnott et al. (2005) use accounting
figures such as book value, cash flows, revenue, sales and dividends. Asness et al. (2013) com-
pute z-scores based on 21 characteristics which can be categorized in four groups: profitability,
growth, safety and payout. However, not every firm characteristic will end in superior results.
Our results show that when the choice of the underlying characteristics is poor, unconstrained
policies display disappointing results, with unexpectedly low (or even negative) Sharpe ratios.
Our third point of criticism relates to the CRRA utility functions used by Brandt et al. (2009).
The advantage of this class of functions is that it takes the higher moments of the portfo-
lio returns into account. In contrast, the main drawback is that the numerical optimization
remains intractable. This can be especially tenuous given that the optimization is based on
several interacting factors such as the individual risk aversion or the sample size. For example,
we find a significant change within the optimization outcome when risk aversion fluctuates.
This underlines that it is crucial to understand the impact of the different parameters of the
optimization.

This article has two major goals. The first is to introduce a comprehensible and easy-
to-implement extension to characteristics-based portfolio optimization which overcomes the
aforementioned limitations. Our model is close to the one of Brandt et al. (2009), though, as
in Hjalmarsson and Manchev (2012), we consider quadratic utility functions which allow for
analytical solutions that are directly interpretable.3 Similarly to Jagannathan and Ma (2003)

3If returns are assumed to be Gaussian, then the merit of CRRA functions vanishes. In this paper, because of the low
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and DeMiguel et al. (2009), we argue that adding a simple constraint in the optimization scheme
will often contribute to a strong reduction in the risk of characteristics-based portfolios. This
novel constraint has several supplementary virtues. First, it entails reduced levels of leverage.
This is notably attractive for investors who are sensitive to margin requirements.4 Second, it
lessens the sensitivity of the performance to the selection of firm characteristics and to risk
aversion. Lastly, constrained policies are more stable in time, compared to unconstrained
portfolios. Consequently, asset rotation is strongly reduced in the presence of the constraint
and the corresponding transaction costs are mechanically curtailed. Given that our findings
hold under several robustness tests, these improvements highlight the benefits an investor can
expect from the methodology we propose.

Our second goal is to understand the performance of different firm characteristics within
the optimization framework and the sensitivity of the results towards the implemented input
parameters. The large amount of possible firm characteristics stand in contrast to the handful
of attributes that are considered as inputs in the optimization schemes of Brandt et al. (2009)
and Hjalmarsson and Manchev (2012) or to very specific combinations of accounting figures
(e.g. Hand and Green (2011)). Brandt et al. (2009) argue that since market capitalization,
book-to-market and past returns suffice to explain the cross-section of returns (as shown by
Fama and French (1992) and Carhart (1997)), they are sufficiently good enough candidates
to be fed in the optimization program. Hjalmarsson and Manchev (2012) use the exact same
attributes. While we do not question the relevance of this choice, we adopt a more agnostic
approach which makes room for a broader set of characteristics consisting of both accounting
figures and moments of past returns. We consider a set of 12 characteristics and study their
impact on the performance of the portfolio policies. As such, we do not restrict our study
to a few combinations of characteristics, but we span, in total, no less than 298 assortments.
Finally, we study the sensitivity of our results to variations in important input parameters such
as risk aversion, estimation sample size and bindingness of the leverage constraint.

The remainder of the paper is structured as follows. In Section 2, we detail our methodology
and further justify the inclusion of a constraint in the optimization scheme. In Section 3,
we describe our dataset and provide results for portfolios solely based on one or two firm
characteristics. Section 4 is devoted to extensions and robustness checks related to the optimal
number of characteristics that should be considered, to the sensitivity of our results to sample
size, the bindingness of the constraint and to the factor exposure of the portfolios. Finally, in
Section 5, we conclude.
frequency at which accounting figures are released, we will use year-on-year returns. One year is a rather long horizon
for the computation of returns and, as Campbell et al. (1997) put it, "since all moments are finite, the Central Limit
Theorem applies and long-horizon returns will tend to be closer to the normal distribution than short-horizon returns".
In this context, the benefits of CRRA functions are unclear.

4For instance, in the US, Regulation T of the Federal Reserve Board requires that the sum of the absolute value of all
positions does not exceed twice the equity within the account (i.e. the margin requirement is equal to 50%). The impact
on prices of heterogeneous margin requirements across assets was studied by Garleanu and Pedersen (2011). Rytchkov
(2014) considers a similar problem with only one asset which is subject to time-varying margin constraints. The idea
of adding leverage constraints to portfolio choice optimization is not new (e.g. Grossman and Vila (1992)), but it is
becoming increasingly popular (Jacobs and Levy (2013), Jacobs and Levy (2014)).
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2 Methodology

2.1 The model

Our starting point is the framework introduced by Brandt et al. (2009), who consider policies
which take the following linear form:5

wT = w̄T + xTθT , (1)

where w̄T is an initial benchmark which is adjusted according to the cross-sectional differences
in characteristics. The (FT × 1) vector θT is the weight assigned to the characteristics and the
(NT × FT ) matrix xT comprises the firm’s characteristics normalized so that they have zero
mean and unit variance. NT will henceforth denote the number of stocks and FT the number
of characteristics at time T . We use bold notations for vectors and matrices. Moreover, we use
subscripts to underline that the portfolios are time-dependent: we consider dynamic trading
and weights will be updated at each rebalancing period. Accordingly, we seek to solve the
following max-utility problem:

max
θT

ET [u(rp,T+1)] = max
θT

ET
[
u
(
(w̄T + xTθT )′ rT+1

)]
, (2)

where rT+1 is the (N × 1) vector of the firms future returns and rp,T+1 is the aggregate future
return of the portfolio. The expectation’s underscript T highlights that we take the conditional
expectation (the investment decision is taken with knowledge of present and past information
only).

In formula (1), we see that the elements of xTθT are simply corrections that are applied
to the benchmark so as to improve its performance. However, when the magnitude of the
corrections is too large, the benchmark weights are diluted and leverage (negative weights)
appear. This can be resolved by imposing that none of the weights be negative, similarly as in
Jagannathan and Ma (2003). For tractability purposes, we introduce an alternative constraint.
We propose to perform the maximization program (2) under the constraint

θ′Tx
′
TxTθT = δT , (3)

where δT satisfies the inequalities (θ0
T )′x′TxTθ0

T > δT > 0, with θ0
T being the solution to the

unconstrained problem, so that the constraint is indeed binding. This simply amounts to
impose that the L2-norm of the vector xTθT is equal to δT . Of course, one could consider an
inequality instead of an equality in the constraint, but given the convex nature of the problem,
this would lead to the same solution (the constraint corresponds to the surface of an ellipsoid).
As δT decreases to zero, the optimal portfolio converges to the initial benchmark. Compared
to the unconstrained case, the inclusion of (3) in the optimization will reduce the magnitude

5Brandt et al. (2009) normalize the second term by the number of stocks, but in our framework a scaling simplification
occurs in the computation of the optimal θT which cancels this normalization.
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of the elements of xTθT which will increase the relative importance of the prior benchmark
w̄T . Accordingly, the intensity of the constraint can be fine-tuned to match any tracking-error
target with respect to the benchmark.

In this article, we will set the benchmark starting point to be the equally-weighted portfolio:
w̄T = 1NT /NT , where NT is the number of stocks considered by the investor and 1N is an N -
dimensional vector of ones. A popular alternative would be the value-weighted portfolio, but
this would set the market capitalization as an important driver of the final weights. We prefer
to stick with an agnostic prior, and this choice can be further justified by the fact that the 1/N
portfolio has been shown to consistently outperform other benchmarks, including the value-
weighted portfolios (see DeMiguel et al. (2009) and Plyakha et al. (2012)). Moreover, Pflug
et al. (2012) have proven that when the loss distribution is highly ambiguous, the 1/N portfolio
becomes optimal. If the benchmark is equally weighted, there is a simple equivalence between
the constraint (3) and a constraint on total weights: θ′Tx′TxTθT = δT ⇔ w′TwT = δT + N−1

T

because the characteristics’ matrix is normalized and the elements of xTθT sum to zero. This
is a convenient property because the constraint on the perturbations xTθT translates into a
constraint on the final weights. Lastly, in the context of leverage constraints, an equally-
weighted starting point ensures that all weights are at the same distance from zero, which
reduces the odds of negative weights within the cross-section of assets.

2.2 The derivation of θT and its interpretations

In practice, the vector θT must be estimated using past data. More precisely, we seek the
solution of

max
θT

1
T

T−1∑
t=T−τ

u

NT∑
i=1

(w̄i,t + θ′Txi,t) ri,t+1

 , subject to θ′Tx′TxTθT = δT , (4)

where t = T is the present date and t = T − τ is the first date of the estimation sample. For
a vector x, we write xi its ith element and for a matrix X, Xi denotes its ith column. We
do not need to impose that the final weights sum to one because the linear form (1) and the
demeaning of xT ensure that it will be the case. For implementation purposes, at a given date,
the sample has a constant number of stocks (NT ) over all years: the optimization is performed
only on stocks for which the characteristics are available from date t = T − τ to date t = T −1.
In this setting, the sample size is equal to τ and we impose that τ > FT and NT > FT .6

6As is shown in the proof, these conditions ensure that the solution of the problem exists.
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Proposition 2.1. Under the assumption of a quadratic utility function u(x) = x− γx2/2, the
solution of (4) is equal to

θ∗T (λ∗) =
[
2λ∗Σ(x)

T + γΣ
(P )
T

]−1
×
[
µT − γσ(w̄)

T

]
, (5)

where λ∗ = inf{λ > 0, (θ∗T (λ))′x′TxTθ∗T (λ) = δT} and

µT = 1
T

T−1∑
t=T−τ

x′trt+1, Σ
(x)
T = x′TxT , σ

(w̄)
T = 1

T

T−1∑
t=T−τ

x′trt+1r
′
t+1w̄t,

Σ
(P )
T = 1

T

T−1∑
t=T−τ

x′trt+1r
′
t+1xt. (6)

This representation recalls those based on regressions of Hjalmarsson and Manchev (2012),
except that new terms appear because of the constraint and the benchmark portfolio. The
terms in (5) can be interpreted in the following way. First, the vectors x′trt+1 correspond to the
(FT×1) returns of portfolios with weights xiT (i = 1, . . . , FT ) and the (FT×1) vector µT carries
their past average values. Likewise, Σ

(P )
T is equal to the (FT ×FT ) sample covariance matrix of

the characteristics-based portfolios inferred from their past returns. It is nonsingular as long
as τ > FT . The scaled instantaneous covariance matrix of the time-T characteristics (Σ(x)

T ) is
invertible when NT > FT . Lastly, the vector σ(w̄)

T measure the covariance between the bench-
mark portfolio and the characteristics-weighted portfolios. Therefore, in the unconstrained
case (λ∗ = 0), the optimal parameter θ∗T (λ∗) in (5) can be decomposed in two components: the
first is equal to the maximum Sharpe portfolio7 where the assets are the characteristics-based
portfolios, and the second is an adjustment stemming from the covariance with the benchmark
starting point.

Next, we discuss the mechanics of the optimization embedded in the formula (5). First, when
the past returns and firm characteristics are given, λ∗ is entirely driven by δT and as δT decreases
to zero, the constraint becomes more binding and λ∗ increases to infinity. Mechanically, the
magnitude of the values of θ∗T decline, which is the sought effect. In the limit δT ↓ 0, λ∗ →∞ and
of course θT → 0. More technically, the constraint (3) acts like a regularization à la Tikhonov8:
if the sample size is too small (τ ≤ FT ), the unconstrained problem is ill-conditioned, but
adding the constraint will guarantee the existence and uniqueness of a solution, as long as the
number of assets exceeds the number of characteristics (which is always the case in practice).

The second important variable in (5) is the risk aversion parameter. In the second factor
7If N assets have expected returns vector µ and covariance matrix Σ, then a standard result of the mean-variance

framework is that the maximum Sharpe ratio portfolio is
{
argmax

w

w′µ√
w′Σw

, 1′Nw = 1
}

= Σ−1µ
1N Σ−1µ .

8Formally, the quadratically constrained quadratic program (4) is equivalent, for some real number λ, to the penalized
quadratic program

min
θT

‖AθT − b‖2
2 + λ‖θT ‖2

Σ
(x)
T

,

where A = ( γ2 Σ
(P )
T )1/2 and b = ( γ2 Σ

(P )
T )−1/2(γσ(w)

T − µT ) and ‖X‖2
Y = X ′Y X. This program is a generalized ridge

regression and the regularization intensity, λ, is entirely determined by δT .
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of the product, it is straightforward that the relative importance of the past average values
µT decreases when risk aversion increases. In fact, when γ increases to infinity, the solution
converges to

θT = −
 T−1∑
t=T−τ

x′trt+1r
′
t+1xt

−1

×

 T−1∑
t=T−τ

x′trt+1r
′
t+1w̄t

 ,
and this expression is expected to generate a low variance portfolio because infinite risk aversion
corresponds to a utility function that focuses only on the quadratic term.

Going back to the simple form (1), we see that the policy will be a combination of a
benchmark portfolio plus FT portfolios (one for each characteristic) with weights equal to the
elements of θT . When (2) is unconstrained, the magnitudes of the elements of θT are such
that the benchmark is diluted in the characteristics portfolios. But with the introduction of
the constraint (3), the weights are progressively shrunk towards the benchmark portfolio as
the constraint becomes tighter. Accordingly, setting a strong constraint is only efficient if the
benchmark is well chosen.

2.3 Choosing δT

The aim of the constraint (3) is to reduce the impact of the adjustment to the benchmark. As
such, the choice of δT will determine to what extent the final weights can differ from those of the
equally-weighted starting point. We want to determine a non-parametric method in order to
set a threshold which will generate weights significantly different from the extreme cases (zero
and full constraint) and simultaneously reduce the proportion of negative weights so that the
leverage of the portfolio reaches reasonable levels. We note yiT for the elements of the vector
xTθT and hence the constraint (3) reads

NT∑
i=1

y2
iT = δT . (7)

The distribution of the yi is difficult to identify in general because it depends on the char-
acteristics which enter the optimization and also on the signs of the elements of θT . Given
that we want to define a criterion which does not depend on any specific case, we adopt a
non-parametric approach.

If the benchmark portfolio is equally weighted, the weights of Equation (1) will become
negative whenever min(xTθT ) < −1/NT . Moreover, the turnover between time T and time
T + 1 will be mostly generated by differences between xTθT and xT+1θT+1 (rather than by the
evolution of the weights between the rebalancing dates of the equally weighted benchmark).
Consequently, both the proportion of negative weights and the turnover can be reduced by
imposing that max(|xTθT |) be smaller than a given quantity.

The main indicator we are interested in is the proportion of negative weights of the portfolio
policies (i.e. leverage). When the optimization is unconstrained, this proportion can be larger
than 40% (Brandt et al. (2009)). In the limiting case δT = 0, the weights are those of the
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1/N benchmark which are naturally positive. In the case of infinite risk aversion (minimum
variance portfolios), Fan et al. (2012) and Coqueret (2014) show that it is worthwhile to allow
for a small proportion of negative weights. Since the benchmark is equally weighted, we recall
that there will be no short selling as long as min

i
yiT > −1/NT . We determine the level of

constraint based on the following result.

Lemma 2.1. If equalities (7) and ∑NT
i=1 yiT = 0 hold, then the smallest minimum value that can

be reached by yiT is −
√

(NT − 1)δT/NT and the largest minimum value is −
√
δT/(NT (NT − 1)).

The previous lemma shows that the smallest possible minimum weight is equal to 1/NT −√
(NT − 1)δT/NT while the largest possible minimum weight is 1/NT −

√
δT/(NT (NT − 1)). In

order to avoid short sales, we would want these quantities to be positive: consequently, the
range for δT should be between (NT (NT − 1))−1 and (NT − 1)/NT . Asymptotically, this means
between N−2

T and 1. The first value is much to stringent: it would ensure zero leverage for
sure. The second value is too permissive: it would ensure positive leverage almost surely. For
very large investment universes, there is a large difference between these two bounds. In order
to keep our empirical results as tangible as possible we want to retain one simple criterion for
δT for the entire analysis. For this reason we consider an intermediate situation and choose
the geometric mean of the extreme situations: δT = N−1

T . As we will show in the subsequent
sections, this choice will generate no more than 10% of negative weights in nearly all the cases
we have tested. Finally, we show in our robustness tests that the presented results also hold
for other values of δT .

3 Empirical analysis

3.1 Data

The construction of the research universe is detailed in Appendix A. Figure 1 shows the cross-
sectional average of each firm characteristic over the entire sample. From this figure, we see
that the firm characteristics evolve differently over time. This is of major importance given that
we want to benefit from the complementarity of these firm characteristics. In total the number
of companies within our sample is growing over time from 1,353 (in 1969) to a maximum of
2,652 (in 2003).

In addition to the sole time-series development of our firm characteristics, Table 1 provides
the average correlation between all reported characteristics. Together, both illustrations allow
to verify that all retained characteristics carry non-redundant information.9 The highest ob-
served correlation is 52%, between the cash-flow over assets (CFA) and the return on assets
(ROA).

9We have also computed the variance of the returns over the past 24 months and idiosyncratic risk (standard deviation
of the residuals of the CAPM regression used for the computation of the beta), but they were highly correlated with
the 60 month variance. Moreover, we found that the ratio of EBIT to MEQ had a 76% correlation with the MOM
characteristic. Consequently, these attributes were withdrawn from our study.
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Figure 1: Time-series of averages of firm characteristics. This figure shows the cross-sectional average
values of all analyzed firm characteristics from June 1969 to June 2013. A list of all abbreviations can be found in
Appendix B. The calculation is done on an annual basis at the end of June to ensure that the retained information of
the corresponding annual reports is available. All reported average values are calculated across all sample companies
every year. MEQ is the company’s market equity value, BTM represents the book-to-market value, DIY represents the
company’s current dividend yield, LEV the leverage-ratio, MOM the momentum calculated from t-12 to t-2 and VAR
the variance based on 60 monthly simple returns. ROA represents the return on assets, CFA the company’s cash-flow
over assets and GMV the absolute annual variation in gross-margin, ERV the earnings volatility measured as standard
deviation over the past 20 quarters previous to each regarded year and CUE the annual change in earnings. Finally,
AGR stands for the company’s year-over-year asset growth.

In Table 2 we compute the autocorrelation of the characteristics with lags equal to 1, 2,
3, 4 and 5 years. Autocorrelation is computed as the average Pearson correlation of one firm
characteristic on the cross-sectional level lagged by 1 to 5 years. It can be seen that the firm
characteristics are quite stable in the cross-section, except for momentum (MOM ) and the gross
margin variation (GMV ). In contrast, the market equity (MEQ) and variance (VAR) are the
most stable attributes (large firms remain large and low risk firms remain low risk, at least in
relative terms).
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Char MEQ BTM DIY LEV MOM VAR ROA CFA GMV ERV CUE AGR
MEQ 1 -0.13 0.07 -0.08 0.08 -0.17 0.12 0.10 0.03 -0.12 0.00 0.06
BTM 1 0.32 0.48 -0.23 -0.11 -0.21 -0.02 -0.11 -0.13 -0.02 -0.20
DIY 1 0.13 -0.11 -0.40 0.01 0.11 -0.09 -0.12 -0.01 -0.14
LEV 1 -0.12 0.04 -0.23 -0.07 -0.08 0.09 -0.02 -0.11
MOM 1 -0.03 0.07 0.11 0.05 -0.04 0.02 0.01
VAR 1 -0.14 -0.15 0.05 0.30 0.00 0.04
ROA 1 0.52 0.17 -0.25 0.04 0.22
CFA 1 0.07 -0.17 -0.01 -0.12
GMV 1 0.00 0.02 0.09
ERV 1 -0.01 0.00
CUE 1 0.06
AGR 1

Table 1: Correlation of firm characteristics. The table displays the correlation of the firm characteristics
within the cross-section. A list of all abbreviations can be found in Appendix B. Char. refers to the corresponding firm
characteristic: MEQ is the company’s market equity value, BTM represents the book-to-market value, DIY represents
the company’s current dividend yield, LEV the leverage-ratio, MOM the momentum calculated from t-12 to t-2 and VAR
the variance based on 60 monthly simple returns. ROA represents the return on assets, CFA the company’s cash-flow
over assets and GMV the absolute annual variation in gross-margin, ERV the earnings volatility measured as standard
deviation over the past 20 quarters previous to each regarded year and CUE the annual change in earnings. Finally,
AGR stands for the company’s year-over-year asset growth.

Lag MEQ BTM DIY LEV MOM VAR ROA CFA GMV ERV CUE AGR
1 0.88 0.73 0.69 0.77 -0.05 0.89 0.64 0.38 0.61 0.82 0.04 0.26
2 0.80 0.60 0.60 0.63 -0.06 0.78 0.51 0.30 0.31 0.70 0.03 0.14
3 0.74 0.51 0.55 0.54 -0.03 0.66 0.45 0.26 0.07 0.58 0.03 0.09
4 0.68 0.44 0.52 0.46 -0.02 0.56 0.41 0.24 -0.17 0.46 0.02 0.07
5 0.63 0.39 0.49 0.40 -0.03 0.45 0.36 0.21 -0.09 0.39 0.01 0.05

Table 2: Autocorrelation of firm characteristics. The table displays the autocorrelation of the regarded
firm-characteristics. Each year, we compute the Pearson correlation of one firm characteristic of all firms with the same
characteristic of all firms lagged by one to five years. The correlation is calculated only for the firms with available data.
The correlations are then averaged over all sample dates. A list of all abbreviations can be found in Appendix B. The
autocorrelations are calculated for the following firm characteristics: MEQ is the company’s market equity value, BTM
represents the book-to-market value, DIY represents the company’s current dividend yield, LEV the leverage-ratio,
MOM the momentum calculated from t-12 to t-2 and VAR the variance based on 60 monthly simple returns. ROA
represents the return on assets, CFA the company’s cash-flow over assets and GMV the absolute annual variation in
gross-margin, ERV the earnings volatility measured as standard deviation over the past 20 quarters previous to each
regarded year and CUE the annual change in earnings. Finally, AGR stands for the company’s year-over-year asset
growth.

3.2 Single characteristic portfolios

3.2.1 Portfolio construction and key indicators

At the beginning of each year, we compute the portfolio policy according to (1) and (5).
Within the scope of the single and double characteristic portfolios we will consider two cases.
The first one is defined with δT = ∞ implying that no constraint is used for the optimization
(unconstrained policy). The second case is set with δT = N−1

T allowing for an intermediate
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level between no constraint and maximum constraint (constrained policy). For each of these
two cases, we will look at the impact of risk aversion on the performance of the portfolio.
Accordingly, we will report results for low risk aversion (γ = 1), moderate risk aversion (γ = 5)
and high risk aversion (γ = 10).

The portfolio is held for one year and the weights are then updated using the latest data at
the end of June. As in Brandt et al. (2009), we use a calibration sample of τ = 10 years. We
will study the sensitivity of the results to variations in τ in Section 4.2. We truncate our sample
before 1969 in order to obtain a sufficient number of companies for which many characteristics
are available. This means that the allocation starts at the beginning of 1979 and ends in June
2013.

Our eight key indicators consist of performance, turnover and leverage based measures.
Transaction costs are modelled according to the same cross-sectional distribution as that of
Brandt et al. (2009): zi,T = AT (0.006− 0.0025mei,T ), where mei,T is the time T market equity
of stock i, divided by the time T maximum market equity across all stocks. The AT factor is
used to model a linear decrease of transaction costs in time. However, because our sample is
longer than the one of Brandt et al. (2009), we assume that transaction costs in 1979 are five
times larger than those in 2013 (i.e. A1979 = 5 and A2013 = 1). Hence, the cost of transaction
incurred by stock i at time T is TCi,T = zi,T×|wi,T−wi,T−|, where wi,T− is the weight in portfolio
of stock i just before the rebalancing. We compute the average annual portfolio transaction
costs as

TC = 1
T

T∑
t=1

Nt∑
i=1

TCi,t.

Further we calculate the turnover as

Turn = 1
T

T∑
t=1

Nt∑
i=1
|wi,T − wi,T−|.

On the side of the performance indicators we introduce volatility (Vol) as the standard
deviation of annual returns. The Sharpe ratio (SR) is equal to the annualized return minus the
risk free rate10, divided by the portfolio’s annualized volatility. In all tables, we test whether the
Sharpe ratio of a portfolio policy is significantly above that of the equally-weighted benchmark
using the bootstrap test of Ledoit and Wolf (2008). Figures are presented in bold font when
the corresponding p-value is smaller than 10%. The CAPM alpha (α) and beta (β) result from
regressing the portfolio returns against a value-weighted index consisting of all available stocks
in the universe.

Lastly, we provide the average (over all dates) sum (SNW) and average proportion of neg-
ative weights (PNW) of the portfolios:

SNW = 1
T

T∑
t=1

Nt∑
i=1

1{wi,t<0}wi,t,

10We use the 3M T-Bill rates, which, over the whole sample, average to a 5.6% annual rate.
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PNW = 1
T

T∑
t=1

Nt∑
i=1

1{wi,t<0}

Nt

.

The sum of negative weights is a proxy for leverage because it represents the proportion of
shortsales within the portfolio. An investor subject to Regulation T requirements must have
this indicator below 0.5, which, as we will see, is not always the case for unconstrained policies.

Table 3 provides the results of the introduced key indicators which are obtained for the
equally-weighted policy.

Vol SR Turn TC (%) α β SNW PNW
Equally-weighted benchmark 0.17 0.39 0.29 0.55 0.07 1.07 0.00 0.00

Table 3: Key indicators of the benchmark portfolio. This table displays the results for all key indicators
for the equally weighted benchmark portfolio. A list of all abbreviations can be found in Appendix B.

3.2.2 Unconstrained policies

Table 4 shows the results of the unconstrained single characteristic portfolio policy. We report
the eight key indicators presented in the previous subsection. Please note that this format will
be the same for all subsequent tables in the current section. We further provide a list of all
abbreviations in Appendix B.

The first and probably most obvious feature is that our results depend strongly on risk
aversion. As expected, volatility decreases with γ: it is divided by a factor of 1.4 to 3.5 (across
the 12 firm characteristics) when switching from γ = 1 to γ = 10. Turnover and transaction
costs, too, are much impacted by risk aversion (divided by a factor of 4 to 10), as well as
the proportion of negative weights (reduced by 50% to 95%). The sum of negative weights
indicates that low risk aversion leads to very leveraged portfolios: the portfolios require from
50% to 380% of short sales. Nevertheless, we do not report a clear monotonous impact on the
Sharpe ratio. The loss in Sharpe ratio for portfolios built on market equity (MEQ) is severe,
from 1.15 for γ = 1 to 0.10 for γ = 10, while for portfolios designed upon dividend yields,
it is the opposite (0.24 versus 0.52). For some characteristics (VAR, CFA, GMV, ERV), the
maximum out-of-sample Sharpe ratio is attained for γ = 5.

When comparing the Sharpe ratios in Table 4 with those of the equally-weighted benchmark
we find that only four values, namely for MEQ, BTM, DIY and AGR, are significantly higher
than those of the benchmark.11 Four characteristics seem little, especially given the high
Sharpe ratios associated to low risk aversion. The lack of significance can only stem from
the very high volatilities of the corresponding portfolios. Overall, a low risk aversion leads to
unrealistic portfolios: for instance, one of them (CFA) has a negative beta (-0.64) and notably
high turnover (10.74). In fact, we find a relationship between the characteristics which generate

11Notwithstanding the large volatilities when γ = 1, given that a Sharpe ratio of 0.71 is not found to be significantly
different from 0.39, we may conclude that the test is rather conservative.
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Vol SR Turn TC (%)
γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ 0.52 0.19 0.17 1.15 0.42 0.10 4.18 0.59 0.46 7.54 1.01 0.82
BTM 0.56 0.21 0.18 0.88 0.46 0.24 4.71 0.63 0.49 9.12 1.22 0.88
DIY 0.22 0.16 0.16 0.24 0.50 0.52 2.85 0.77 0.75 5.32 1.53 1.49
LEV 0.62 0.20 0.17 0.65 0.42 0.25 3.58 0.54 0.52 7.04 0.98 0.93
MOM 0.69 0.22 0.18 0.71 0.37 0.15 9.28 1.02 1.13 17.59 1.97 2.27
VAR 0.49 0.15 0.14 0.35 0.49 0.44 2.88 0.76 0.70 4.96 1.45 1.38
ROA 0.59 0.19 0.18 0.64 0.40 0.23 4.81 0.76 0.81 9.77 1.52 1.62
CFA 0.47 0.16 0.16 0.35 0.44 0.38 10.74 2.69 2.55 23.88 6.36 5.82
GMV 0.33 0.18 0.19 0.13 0.30 0.29 7.52 1.45 1.55 12.57 3.13 3.13
ERV 0.35 0.15 0.15 0.31 0.42 0.37 2.22 0.68 0.74 3.97 1.24 1.36
CUE 0.26 0.17 0.17 0.32 0.39 0.39 3.96 1.10 0.90 8.42 2.31 1.79
AGR 0.55 0.20 0.18 0.99 0.50 0.23 9.71 0.93 0.94 19.54 1.89 1.83

α β SNW PNW
γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ 0.56 0.08 0.02 1.79 1.07 0.98 -3.32 -0.08 -0.08 0.31 0.08 0.12
BTM 0.45 0.09 0.04 2.08 1.18 1.06 -2.11 -0.04 -0.03 0.50 0.08 0.03
DIY 0.07 0.09 0.10 0.69 0.85 0.87 -0.91 -0.14 -0.11 0.30 0.18 0.16
LEV 0.35 0.08 0.05 2.00 1.13 1.02 -1.76 -0.01 -0.07 0.60 0.02 0.04
MOM 0.44 0.08 0.03 2.05 1.17 1.06 -2.96 -0.10 -0.12 0.45 0.09 0.11
VAR 0.17 0.09 0.08 1.06 0.76 0.73 -1.16 -0.21 -0.21 0.41 0.15 0.11
ROA 0.36 0.08 0.04 1.53 1.09 1.03 -2.24 -0.08 -0.14 0.42 0.08 0.08
CFA 0.26 0.10 0.08 -0.64 0.58 0.73 -2.85 -0.74 -0.68 0.38 0.19 0.19
GMV 0.08 0.06 0.06 0.39 0.90 0.97 -2.48 -0.39 -0.44 0.36 0.17 0.21
ERV 0.12 0.08 0.07 0.94 0.80 0.78 -0.51 -0.10 -0.15 0.42 0.03 0.04
CUE 0.08 0.07 0.07 1.13 1.01 0.99 -0.91 -0.14 -0.09 0.13 0.04 0.03
AGR 0.53 0.10 0.04 1.31 1.10 1.07 -3.81 -0.12 -0.09 0.38 0.08 0.08

Table 4: Unconstrained single characteristic portfolio policy. This table displays the results for all
key indicators and different risk aversions of the unconstrained single characteristic based portfolio policy. A list of all
abbreviations can be found in Appendix B. The calculation is done for all 12 firm characteristics: MEQ is the company’s
market equity value, BTM represents the book-to-market value, DIY represents the company’s current dividend yield,
LEV the leverage-ratio, MOM the momentum calculated from t-12 to t-2 and VAR the variance based on 60 monthly
simple returns. ROA represents the return on assets, CFA the company’s cash-flow over assets and GMV the absolute
annual variation in gross-margin, ERV the earnings volatility measured as standard deviation over the past 20 quarters
previous to each regarded year and CUE the annual change in earnings. Finally, AGR stands for the company’s year-
over-year asset growth. We compute the results of the portfolio policy by using different risk-aversion inputs (γ) of 1,
5 and 10 for each firm characteristic. Bold figures indicate a statistically higher Sharpe ratio at a 10% confidence level,
compared to the equally weighted benchmark.

high turnover and those which have the lowest autocorrelations in Table 2: MOM, CFA, GMV
and AGR.

A second salient conclusion is that the performance of the regarded portfolios are driven by
the choice of the underlying characteristic. If we look at the intermediate level of risk aversion
(γ = 5), we see that volatility will range between 0.15 and 0.22, Sharpe ratio between 0.30
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and 0.50 and turnover between 0.54 and 2.69. These discrepancies are strongly magnified if we
consider a low risk aversion.

3.2.3 Constrained policies

So far our observations of the unconstrained case has shown that the choice of risk aversion
strongly impacts the results of the portfolio policy. Low levels of risk aversion lead to relatively
aggressive portfolio policies with high leverage, high volatility and large deviations from the
market portfolio. On the other hand, a high risk aversion leads to lower levels of leverage,
volatility and turnover. Given the purpose of our constraint we expect the overall level of
leverage to decrease and to obtain smaller portfolio turnovers. Further, we do not expect Sharpe
ratios to increase when applying the constraint. At first this might seem counter-intuitive
since Jagannathan and Ma (2003) show that constraints can help to improve Sharpe ratios if
optimization estimates are noisy. However, given that the approach by Brandt et al. (2009)
is based on characteristics instead of returns this problem is lowered since firm characteristics
are more stable over time. Consequently, the introduction of our constraint is not necessarily
expected to lead to better out-of-sample Sharpe ratios.

In Table 5 we gather the results obtained when introducing the constraint of Equation 3
with δT = N−1

T . The first and probably most striking observation is that the overall results of
the portfolio policies seem less volatile and more robust to changes in risk aversion compared
to the unconstrained case.12 The discrepancies in Sharpe ratio are much smaller and for half of
the characteristics (DIY, VAR, CFA, GMV, ERV and CUE), the maximum difference is smaller
than 0.1 in absolute value across all risk aversions. The largest spread in volatility is 0.04 in
absolute value. These limited variations translate to CAPM alphas and betas. The turnover
reaches reasonable values (never above 100%) even for low risk aversion (apart for the policies
based on momentum). Consequently, apart for one exception (MOM and γ = 1), transaction
costs are all below 20 basis points. Looking at portfolio weights, we observe that only one case
(MEQ with γ = 1) displays more than 10% of negative weights, and the corresponding leverage
is 13%, which is much lower than the 332% of the unconstrained case.

While the constraint reduces the spreads in performance for a given characteristic across
different levels of risk aversion, it also curtails the discrepancies in the cross-section of charac-
teristics. For γ = 5, the minimum Sharpe ratio is 0.34 and the maximum 0.45 and the spread
in alpha is bounded by 0.02 in absolute value (0.07 in the unconstrained case). For low risk
aversion, the reduction of spreads is even more apparent: from 1.02 to 0.23 for the Sharpe
ratio and from 8.52 to 0.71 for turnover. This strong reduction in dispersion compared to the
unconstrained policies holds for all eight indicators we report.

This reduced discrepancy across characteristics has a straightforward explanation: the con-
straint imposes that final weights do not fluctuate too far from the benchmark weights. As a
by-product, this also implies a greater stability of weights through time, as shown by the reduc-
tion of turnover and transaction costs. The reduction is 50% on average, but it is usually larger

12Using a different optimization scheme, Grauer and Shen (2000) obtain similar results.
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Vol SR Turn TC (%)
γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ 0.19 0.19 0.16 0.57 0.40 0.18 0.63 0.50 0.31 1.11 0.86 0.52
BTM 0.22 0.20 0.18 0.54 0.43 0.26 0.69 0.55 0.45 1.28 1.07 0.79
DIY 0.16 0.16 0.16 0.40 0.42 0.44 0.59 0.52 0.56 1.06 0.98 1.04
LEV 0.21 0.19 0.17 0.47 0.40 0.27 0.56 0.48 0.47 1.01 0.88 0.82
MOM 0.20 0.19 0.17 0.50 0.36 0.23 1.18 0.68 0.79 2.17 1.30 1.46
VAR 0.18 0.15 0.15 0.40 0.45 0.42 0.56 0.51 0.48 1.05 0.92 0.88
ROA 0.18 0.18 0.17 0.46 0.39 0.29 0.62 0.59 0.51 1.14 1.12 0.96
CFA 0.18 0.18 0.18 0.40 0.37 0.35 0.72 0.65 0.72 1.28 1.25 1.35
GMV 0.17 0.17 0.17 0.34 0.34 0.34 0.60 0.57 0.60 1.07 1.03 1.08
ERV 0.16 0.15 0.15 0.45 0.45 0.41 0.47 0.47 0.50 0.79 0.81 0.86
CUE 0.17 0.17 0.16 0.37 0.37 0.37 0.51 0.49 0.49 0.90 0.88 0.89
AGR 0.19 0.18 0.17 0.50 0.44 0.27 0.90 0.62 0.69 1.59 1.15 1.26

α β SNW PNW
γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ 0.11 0.08 0.03 1.10 1.07 0.99 -0.13 -0.04 0.00 0.14 0.05 0.00
BTM 0.11 0.08 0.05 1.26 1.17 1.05 -0.02 -0.01 -0.02 0.08 0.04 0.03
DIY 0.07 0.07 0.08 0.96 0.95 0.95 -0.02 -0.02 -0.02 0.07 0.06 0.07
LEV 0.09 0.08 0.05 1.19 1.12 1.03 0.00 -0.00 -0.05 0.00 0.00 0.04
MOM 0.10 0.07 0.04 1.11 1.10 1.03 -0.06 -0.03 -0.05 0.10 0.04 0.07
VAR 0.07 0.08 0.07 1.04 0.89 0.86 -0.02 -0.04 -0.05 0.03 0.05 0.05
ROA 0.08 0.07 0.05 1.06 1.06 1.02 -0.04 -0.04 -0.03 0.05 0.04 0.03
CFA 0.07 0.07 0.06 1.09 1.06 1.05 -0.04 -0.03 -0.05 0.06 0.04 0.06
GMV 0.06 0.06 0.06 1.00 1.01 1.03 -0.04 -0.03 -0.04 0.05 0.04 0.05
ERV 0.08 0.08 0.07 0.96 0.90 0.86 -0.00 -0.02 -0.04 0.00 0.01 0.02
CUE 0.07 0.07 0.07 1.03 1.01 1.00 -0.02 -0.02 -0.02 0.01 0.01 0.01
AGR 0.09 0.08 0.05 1.08 1.06 1.05 -0.08 -0.03 -0.03 0.08 0.04 0.04

Table 5: Constrained single characteristic portfolio policy. This table displays the results for all key
indicators and different risk aversions of the constrained single characteristic based portfolio policy using constraint (3).
A list of all abbreviations can be found in Appendix B. The calculation is done for all 12 firm characteristics: MEQ is
the company’s market equity value, BTM represents the book-to-market value, DIY represents the company’s current
dividend yield, LEV the leverage-ratio, MOM the momentum calculated from t-12 to t-2 and VAR the variance based on
60 monthly simple returns. ROA represents the return on assets, CFA the company’s cash-flow over assets and GMV the
absolute annual variation in gross-margin, ERV the earnings volatility measured as standard deviation over the past 20
quarters previous to each regarded year and CUE the annual change in earnings. Finally, AGR stands for the company’s
year-over-year asset growth. We compute the results of the portfolio policy by using different risk-aversion inputs (γ) of
1, 5 and 10 for each firm characteristic. All results are based on δT = N−1

T . Bold figures indicate a statistically higher
Sharpe ratio at a 10% confidence level, compared to the equally weighted benchmark.

for small values of γ. The average proportion of negative weights as well as total short-sales
are also much smaller when introducing the constraint, which makes constrained policies easier
to implement for financial institutions with leverage restrictions.

Surprisingly, the number of policies which significantly outperform the benchmark is higher
after the introduction of the constraint (6) than before (4). This is a by-product of the reduction
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of the risk of all policies. In fact, this risk reduction generated by the constraint makes it possible
for the investor to lower his risk aversion in the new setting. For most policies, this yields both
higher alpha and lower leverage.

3.3 Double characteristic portfolios

Having analyzed the performance of the single characteristic policies, we now turn to combina-
tions of two characteristics. Twelve characteristics imply 66 pairs. As it is more convenient to
display the results of the most important combinations, we only report the top six and bottom
six policies. The ranking is performed according to the Sharpe ratio for the intermediate risk
aversion (γ = 5).

3.3.1 Unconstrained policies

Table 6 shows the results for the unconstrained policies. The structure of the table follows the
ones of Section 3.2. One first observation refers to the frequency of the most often occurring
single firm characteristics within the double sorted portfolio policies. We see that VAR appears
three times while MEQ, ERV, DIY and AGR appear twice in the top six pairs and MOM and
GMV are represented three times in the bottom six combinations. This is in line with the
figures of Table 4: DIY, VAR and AGR had the highest Sharpe ratio (for γ = 5), while MOM
and GMV displayed the lowest ones.

We find that the best pairs outrank single characteristic policies in terms of Sharpe ratio
(1.45 versus 1.15 for γ = 1 and 0.73 versus 0.5 for γ = 5). This can at least partially be
explained by the fact that the set of pairs is larger than the set of unique attributes (66 versus
12). Comparing the top six entries with the bottom six ones, we understand that the higher risk-
adjusted performance comes from both, a lower volatility and higher returns. This is further
confirmed by the higher alphas. Turnover, transaction costs and the proportion of negative
weights are most of the time (always when γ = 5 or γ = 10) lower for the top six policies.

The impact of the risk aversion parameter is substantial on all of the indicators we report.
The magnitudes are close to those of Table 4. Moreover, as in the previous section, we ac-
knowledge that the choice of characteristic is crucial for unconstrained portfolios. The policy
based on the Fama French attributes (size and book-to-market) ranked 11th out of 66 for the
Sharpe ratio for moderate risk aversion.

3.3.2 Constrained policies

As in the previous section, Table 7 completes the analysis with the constrained portfolio policies.
As done before we show the results for the top and bottom six Sharpe ratio portfolios associated
to a γ of five.

We first underline that four pairs (BTM-ERV, MEQ-DIY, MEQ-VAR and VAR-ERV) re-
main in the top six after the introduction of the constraint. The most represented characteristics
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Vol SR Turn TC (%)
γ 1 5 10 1 5 10 1 5 10 1 5 10

to
p
SR

BTM-ERV 0.62 0.16 0.14 0.94 0.73 0.45 4.97 1.08 0.88 9.52 2.14 1.71
VAR-AGR 0.54 0.16 0.14 0.98 0.71 0.40 11.77 1.57 1.16 25.39 3.67 2.49
MEQ-VAR 0.51 0.17 0.14 1.36 0.70 0.31 5.38 0.99 0.78 10.01 1.90 1.48
DIY-AGR 0.58 0.18 0.17 1.00 0.69 0.42 10.29 1.29 1.32 20.48 2.59 2.60
MEQ-DIY 0.48 0.17 0.15 1.45 0.69 0.31 5.17 1.01 0.78 9.71 1.95 1.48
VAR-ERV 0.49 0.16 0.15 0.50 0.65 0.57 3.27 1.03 1.00 5.78 2.21 2.20

bo
tt
om

SR

ERV-CUE 0.42 0.14 0.15 0.16 0.32 0.29 4.97 1.07 1.26 9.37 2.00 2.39
LEV-MOM 0.73 0.21 0.19 0.63 0.32 0.10 6.11 1.71 1.68 11.58 3.49 3.44
MOM-GMV 0.73 0.22 0.19 0.54 0.31 0.15 11.80 1.93 1.71 21.91 4.05 3.64
MOM-ROA 0.69 0.22 0.19 0.64 0.31 0.11 10.18 1.90 1.55 20.55 3.91 3.13
CFA-GMV 0.51 0.18 0.18 0.21 0.30 0.25 16.93 2.82 2.57 34.41 5.98 5.46
GMV-CUE 0.38 0.19 0.20 -0.02 0.23 0.25 10.33 1.86 1.88 18.34 3.94 3.83

α β SNW PNW
γ 1 5 10 1 5 10 1 5 10 1 5 10

to
p
SR

BTM-ERV 0.54 0.13 0.08 1.83 0.85 0.73 -2.55 -0.23 -0.21 0.52 0.13 0.09
VAR-AGR 0.57 0.13 0.08 0.32 0.67 0.72 -4.66 -0.45 -0.29 0.41 0.17 0.16
MEQ-VAR 0.69 0.13 0.06 1.32 0.80 0.74 -4.32 -0.36 -0.21 0.35 0.19 0.15
DIY-AGR 0.57 0.14 0.08 1.22 0.91 0.87 -4.11 -0.28 -0.25 0.39 0.22 0.18
MEQ-DIY 0.69 0.13 0.06 1.31 0.88 0.83 -3.75 -0.27 -0.18 0.34 0.23 0.19
VAR-ERV 0.24 0.12 0.10 1.09 0.74 0.69 -1.64 -0.27 -0.27 0.54 0.17 0.13

bo
tt
om

SR

ERV-CUE 0.09 0.06 0.06 0.64 0.78 0.80 -0.92 -0.16 -0.25 0.43 0.06 0.09
LEV-MOM 0.43 0.07 0.02 1.66 1.13 1.06 -2.38 -0.30 -0.30 0.51 0.19 0.16
MOM-GMV 0.37 0.07 0.04 1.46 1.03 0.98 -4.17 -0.47 -0.41 0.47 0.22 0.21
MOM-ROA 0.41 0.06 0.02 1.69 1.17 1.10 -3.47 -0.38 -0.30 0.45 0.17 0.16
CFA-GMV 0.16 0.06 0.05 -0.02 0.87 0.98 -4.63 -0.73 -0.64 0.42 0.25 0.24
GMV-CUE 0.05 0.06 0.06 -0.04 0.83 0.94 -2.85 -0.46 -0.49 0.36 0.18 0.21

Table 6: Unconstrained double characteristic portfolio policy. This table displays the results for
all key indicators and different risk aversions of the unconstrained double characteristic based portfolio policy. The
table shows the top six and bottom six combinatorial portfolios out of the possible 66 possible pairs with respect to
the Sharpe ratio and γ = 5. A list of all abbreviations can be found in Appendix B. The calculation is done for all
12 firm characteristics: MEQ is the company’s market equity value, BTM represents the book-to-market value, DIY
represents the company’s current dividend yield, LEV the leverage-ratio, MOM the momentum calculated from t-12 to
t-2 and VAR the variance based on 60 monthly simple returns. ROA represents the return on assets, CFA the company’s
cash-flow over assets and GMV the absolute annual variation in gross-margin, ERV the earnings volatility measured as
standard deviation over the past 20 quarters previous to each regarded year and CUE the annual change in earnings.
Finally, AGR stands for the company’s year-over-year asset growth. We compute the results of the portfolio policy by
using different risk-aversion inputs (γ) of 1, 5 and 10 for each firm characteristic. Bold figures indicate a statistically
higher Sharpe ratio at a 10% confidence level, compared to the equally weighted benchmark.

remain the same for the best strategies (DIY, MEQ, ERV and VAR) and the worst ones (GMV,
MOM, ROA). As such, the constraint does not strongly alter the overall ordering of the pairs.

Compared to the best constrained single characteristic policies, the best pairs provide an
improvement in alpha (0.01 to 0.02 gain) and Sharpe ratio (the spreads between maxima is
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Vol SR Turn TC (%)
γ 1 5 10 1 5 10 1 5 10 1 5 10

to
p
SR

BTM-ERV 0.21 0.17 0.15 0.63 0.54 0.36 0.72 0.62 0.55 1.30 1.14 0.98
DIY-ERV 0.16 0.16 0.16 0.55 0.53 0.47 0.57 0.60 0.63 1.03 1.09 1.14
MEQ-DIY 0.18 0.17 0.16 0.60 0.53 0.31 0.66 0.62 0.51 1.19 1.12 0.92
DIY-VAR 0.17 0.15 0.15 0.51 0.52 0.42 0.62 0.58 0.56 1.16 1.05 1.00
MEQ-VAR 0.18 0.16 0.15 0.58 0.51 0.31 0.61 0.58 0.49 1.10 1.03 0.88
VAR-ERV 0.15 0.15 0.14 0.44 0.51 0.49 0.53 0.51 0.52 0.96 0.91 0.94

bo
tt
om

SR

MOM-ROA 0.19 0.20 0.18 0.53 0.37 0.22 1.01 0.71 0.73 1.86 1.36 1.33
LEV-GMV 0.21 0.19 0.17 0.46 0.37 0.26 0.57 0.62 0.58 1.02 1.12 1.06
ROA-GMV 0.19 0.18 0.17 0.43 0.36 0.31 0.63 0.66 0.63 1.14 1.21 1.15
MOM-GMV 0.20 0.19 0.17 0.48 0.35 0.25 1.16 0.75 0.78 2.12 1.38 1.42
GMV-CUE 0.17 0.17 0.17 0.36 0.34 0.34 0.64 0.62 0.64 1.12 1.10 1.13
CFA-GMV 0.19 0.18 0.18 0.33 0.32 0.30 0.72 0.72 0.77 1.27 1.32 1.41

α β SNW PNW
γ 1 5 10 1 5 10 1 5 10 1 5 10

to
p
SR

BTM-ERV 0.13 0.10 0.06 1.15 0.98 0.89 -0.02 -0.03 -0.06 0.09 0.05 0.04
DIY-ERV 0.10 0.09 0.08 0.93 0.91 0.89 -0.01 -0.02 -0.04 0.04 0.05 0.06
MEQ-DIY 0.11 0.09 0.06 1.06 0.97 0.94 -0.12 -0.05 -0.02 0.14 0.11 0.07
DIY-VAR 0.09 0.09 0.07 1.01 0.88 0.89 -0.01 -0.04 -0.06 0.06 0.07 0.07
MEQ-VAR 0.11 0.09 0.06 1.07 0.94 0.89 -0.11 -0.07 -0.05 0.14 0.09 0.07
VAR-ERV 0.08 0.09 0.08 0.91 0.85 0.82 -0.02 -0.04 -0.05 0.02 0.05 0.06

bo
tt
om

SR

MOM-ROA 0.10 0.07 0.04 1.10 1.11 1.05 -0.05 -0.04 -0.05 0.09 0.05 0.07
LEV-GMV 0.09 0.07 0.05 1.18 1.07 1.02 0.00 -0.03 -0.06 0.01 0.04 0.05
ROA-GMV 0.08 0.07 0.06 1.09 1.06 1.01 -0.05 -0.05 -0.05 0.06 0.06 0.06
MOM-GMV 0.09 0.07 0.05 1.11 1.06 1.02 -0.06 -0.04 -0.05 0.10 0.06 0.08
GMV-CUE 0.06 0.06 0.06 0.99 0.99 1.01 -0.04 -0.03 -0.04 0.05 0.04 0.05
CFA-GMV 0.06 0.06 0.05 1.13 1.08 1.06 -0.05 -0.05 -0.06 0.06 0.06 0.07

Table 7: Constrained double characteristic portfolio policy. This table displays the results for all key
indicators and different risk aversions of the constrained double characteristic based portfolio policy. The table shows
the top six and bottom six combinatorial portfolios out of the possible 66 possible pairs with respect to the Sharpe ratio
and γ = 5. A list of all abbreviations can be found in Appendix B. The calculation is done for all 12 firm characteristics:
MEQ is the company’s market equity value, BTM represents the book-to-market value, DIY represents the company’s
current dividend yield, LEV the leverage-ratio, MOM the momentum calculated from t-12 to t-2 and VAR the variance
based on 60 monthly simple returns. ROA represents the return on assets, CFA the company’s cash-flow over assets and
GMV the absolute annual variation in gross-margin, ERV the earnings volatility measured as standard deviation over
the past 20 quarters previous to each regarded year and CUE the annual change in earnings. Finally, AGR stands for the
company’s year-over-year asset growth. We compute the results of the portfolio policy by using different risk-aversion
inputs (γ) of 1, 5 and 10 for each firm characteristic. Bold figures indicate a statistically higher Sharpe ratio at a 10%
confidence level, compared to the equally weighted benchmark.

equal to 0.09, notably 0.54 and 0.45). The improvement in Sharpe ratio can also be seen by
the fact that nearly all top SR portfolios have statistically significant higher Sharpe ratios
than the equally-weighted benchmark. However we do not find any strong decline for volatility
or beta. The lowest volatilities and betas are always those associated to the ERV or VAR
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indicators, which is also true for single characteristic policies. With respect to turnover or
transaction costs, apart when comparing for the momentum-based policy, the spreads are also
negligible. Equivalently to the single characteristic portfolios, we find that both, the sum of
negative weights and the proportion of negative weights, have significantly reduced with the
introduction of our constraint.

Similarly to the single characteristic policies, the introduction of the constraint reduces the
disparities, both across levels of risk aversion and across choices of indicators. When comparing
with the overlapping pairs between Tables 6 and 7, we infer that the reductions in magnitudes
are close to those of single characteristic policies.

Overall, we find that the performance of characteristics-based policies depend strongly on
both the risk aversion parameter and the underlying firm characteristics. Therefore, an investor
should be very careful when choosing these crucial inputs. The introduction of the leverage
constraint reduces the discrepancies across both dimensions (risk aversion and choice of char-
acteristic) and hence curtails the risk of ill-advised decisions. Moreover, the constraint is also
able to reduce the overall leverage in the double characteristic framework and diminishes the
reported transaction costs.

4 Sensitivity analysis and robustness checks

4.1 Does adding characteristics increase value?

Scrutinizing all possible combinations of characteristics and picking the best one for a given
criterion amounts to pure data snooping. We therefore take a broader approach and make
use of the numerous combinations at hand to understand if feeding the optimization with
additional characteristics will improve the policies overall. While the Sharpe ratio is the most
natural performance indicator (overwhelmingly used by practitioners and academics), it can be
improved by taking transaction costs into account so as to reflect risk-adjusted returns more
realistically. Accordingly, we follow Garleanu and Pedersen (2013) and net the gross Sharpe
ratio of transaction costs. We define the transaction cost-adjusted Sharpe ratio (ASR) as
the raw Sharpe ratio minus the ratio of transaction costs (TC) to volatility (the transaction
costs penalize the numerator of the Sharpe ratio): ASR = SR − TC/σ. In Figure 2, we plot
the empirical cumulative distribution function (cdf) of this adjusted Sharpe ratio across all
combinations of two (thin line) and three (thick line) firm characteristics. In the first case,
there are 66 points, while in the second one, 220.

The very short distance (constrained case in grey) or intertwining (unconstrained case in
black) between the curves do not make a clear case for an overall superiority of triple charac-
teristic policies. We illustrate this finding with a simple example: in the constrained double
characteristic portfolio policy of Table 7, the top two choices for γ = 5 are BTM-ERV and
DIY-ERV with Sharpe ratios of 0.54 and 0.53, respectively. The constrained policy based on
BTM, DIY and ERV has a Sharpe ratio of 0.51 for γ = 5. As such, an intuitive combination of
three seemingly well performing characteristics does not necessarily add value. This is further
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Figure 2: Empirical distribution of the transaction cost-adjusted Sharpe ratio. This figure
shows the cumulative distribution function (cdf) of transaction cost-adjusted Sharpe ratio across all combinations of
double and triple characteristic based portfolio policies. The unconstrained policies are plotted in black and the con-
strained ones in grey. We use thin lines for policies based on two characteristics and thick lines for polices based on
three characteristics. The graph corresponds to γ = 5 and the calibration sample size is τ = 10. EW represents the
transaction cost-adjusted Sharpe ratio of the equally-weighted benchmark.

confirmed by the ‘kitchen sink’ combination of MEQ, BTM, DIY, VAR, ERV and AGR (which
have led to high Sharpe ratios in previous settings): for a risk aversion parameter of 5, it shows
a Sharpe ratio of 0.51 with the leverage constraint and 0.4 without.

However, when increasing the number of characteristics per policy, we document a stability
in the indicators which are associated to high Sharpe ratios. With respect to unconstrained
triple characteristic policies and among the 10 highest Sharpe ratios for γ = 5, the BTM,
ERV and AGR characteristics are those with the highest number of occurrences (5 each). For
constrained policies, it is ERV (7 times among the top 10 Sharpe ratios), MEQ (6 times) and
DIY (5 times). This is consistent with what we observed for double characteristic portfolios,
except that VAR (resp. MEQ) featured more (resp. less) within the best combinations. The
momentum attribute is never present among the best performing combinations.

Our results show that the addition of more characteristics does not necessarily increase the
performance of the strategy. For example, when comparing the classical MEQ-BTM pair with
the MEQ-BTM-MOM triplet across constrained versus unconstrained optimizations with γ = 1
or γ = 5, we further find that the triplet never outperforms the pair in terms of Sharpe ratio.
Moreover the triplet always shows higher turnover and transaction costs. Accordingly, in our
framework, an investor would be better off with only the size and book-to-market attributes.
Consequently, it seems that compiling characteristics does not improve performance, apart for
a few particular cases which can only be identified via data mining. Therefore, we believe that
retaining 2 or 3 characteristics is a reasonable choice for investors.
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Lastly, we recall that the transaction cost-adjusted Sharpe ratio of the equally-weighted
benchmark is 0.35. We thus see in Figure 2 that a large majority (at least 75%) of the policies
will outperform the benchmark when the optimization is constrained and γ = 5. However, this
proportion falls to 30% without the constraint. Furthermore, we observe that the left tails of the
distributions reach negative values for unconstrained policies. This is yet another illustration
of the usefulness of the constraint: it allows to limit the risk of strong underperformance of the
policies.

4.2 Sensitivity to sample size

In equation (4), we see that θT is chosen such that it would have maximized the expected utility
of the investor given past values of characteristics and returns. In our base case computations,
we have used rolling samples of τ = 10 years to successively calibrate the values of θT . This
choice is somewhat arbitrary13 and it is legitimate to wonder whether shorter sample sizes
would lead to improvements or not. Indeed, large samples give old data as much importance as
recent data, while it is not obvious that the cross-sectional predictive power of characteristics
remains stable over time. As such, calibrating on smaller samples may allow to adjust θT more
rapidly, especially in times of turbulence.

Table 8 reports the impact on all eight key indicators when varying the estimation sample
size, τ based on the double characteristic portfolio policy BTM-MEQ. As it is not tractable to
provide the results for all combinations of all characteristics, we have performed the analysis
on one double characteristic portfolio policy. Given that market equity (MEQ) and the book-
to-market ratio (BTM) are the two most frequently cited attributes in the literature we have
decided to rely on a portfolio policy of these two. For unconstrained portfolios (Panel A),
we observe that the alpha is overall decreasing with τ . However, this relationship is not fully
transposed to the Sharpe ratio. There is no monotonous impact on volatility or beta. However,
turnover, transaction costs and leverage all decrease with τ . For turnover and transaction costs,
this is quite straightforward, as longer sample size imply more stability of θT through time.

When leverage constraints are enforced (Panel B), the Sharpe ratio decreases with τ , while
the volatility remains constant, which means that average returns are higher when the estima-
tion sample size is smaller. The discrepancies in turnover, transaction costs and leverage are
strongly reduced compared to the unconstrained policies. In short, this means that the con-
straint allows to maintain all indicators stable while increasing the Sharpe ratio when reducing
the estimation sample. This is possible because of the regularization effect of the constraint.
Without the constraint, reducing the estimation sample implies a bad conditioning of the
sample covariance matrix of the characteristics-based portfolios and θT becomes progressively
degenerate. For example, when τ = 2, ΣT in (6) is singular and it is possible to compute θT
using the Moore-Penrose inverse. This leads to a negative Sharpe ratio.

Overall, the unconstrained optimization can only generate relevant weights if the sample
13Brandt et al. (2009) also consider 10 years of past data. In our mean-variance framework, we recall that τ must be

strictly larger than the number of characteristics for unconstrained policies to be well defined.
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Panel A: Unconstrained Policies

Key indicators
τ Vol SR Turn TC (%) α β SNW PNW

10 0.17 0.61 1.20 2.40 0.11 0.93 -0.48 0.28
9 0.19 0.62 1.23 2.39 0.12 1.04 -0.48 0.28
8 0.19 0.61 1.31 2.57 0.12 1.02 -0.49 0.26
7 0.19 0.60 1.42 2.61 0.12 0.98 -0.51 0.25
6 0.20 0.61 1.52 2.69 0.13 1.00 -0.57 0.24
5 0.21 0.65 1.55 2.72 0.14 1.06 -0.63 0.24
4 0.19 0.62 2.03 3.59 0.13 0.87 -0.79 0.26
3 0.21 0.70 2.47 4.43 0.16 0.85 -0.95 0.29

Panel B: Constrained Policies

Key indicators
τ Vol SR Turn TC (%) α β SNW PNW

10 0.19 0.47 0.58 1.05 0.09 1.09 -0.05 0.09
9 0.19 0.49 0.59 1.06 0.09 1.11 -0.05 0.09
8 0.19 0.50 0.60 1.08 0.09 1.08 -0.04 0.08
7 0.19 0.49 0.62 1.12 0.09 1.07 -0.04 0.08
6 0.19 0.49 0.62 1.11 0.09 1.07 -0.04 0.08
5 0.20 0.50 0.63 1.14 0.10 1.13 -0.04 0.08
4 0.19 0.52 0.64 1.18 0.10 1.11 -0.04 0.07
3 0.19 0.52 0.67 1.22 0.10 1.10 -0.04 0.06

Table 8: Sensitivity to the estimation sample size. This table displays the results for all key indicators
for policies based on the double characteristic portfolio policy BTM-MEQ when varying the estimation sample size (τ).
In all cases, the allocation process starts in 1980: for τ < 10, the data is truncated accordingly. In the case of the
constrained policies, we fixed δT = N−1

T and γ = 5. A list of all abbreviations can be found in Appendix B. Bold figures
indicate a statistically higher Sharpe ratio at a 10% confidence level, compared to the equally weighted benchmark.

size is large enough. This drawback is circumvented when adding the constraint. Moreover,
constrained policies seem to deliver better risk-adjusted performance with shorter sample sizes.

4.3 Adjusting the constraint to individual leverage restrictions

Table 9 shows the sensitivities of the key indicators with respect to the bindingness of the
leverage constraint (δT ) based on the double characteristic portfolio policy BTM-MEQ. In all
previous numerical applications so far, we have set the bindingness of the leverage constraint
to δT = N−1

T because it is a reasonable compromise between zero and the full constraint. In
order to investigate the impact of variations in this parameter, we report the key indicators
when δT = N−κT and κ ∈ (0.0, 0.1, . . . 2) so that NT ranges between N−2

T and 1, which are
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Panel A: γ = 1

Key indicators
κ Vol SR Turnover TC (%) α β SNW PNW

1.9 0.18 0.37 0.39 0.67 0.07 1.11 0.00 0.00
1.8 0.18 0.37 0.39 0.69 0.07 1.11 0.00 0.00
1.7 0.19 0.38 0.40 0.71 0.07 1.12 0.00 0.00
1.6 0.19 0.39 0.42 0.73 0.07 1.12 0.00 0.00
1.5 0.19 0.41 0.43 0.77 0.08 1.13 0.00 0.00
1.4 0.19 0.43 0.46 0.82 0.08 1.14 0.00 0.00
1.3 0.20 0.46 0.50 0.89 0.09 1.16 0.00 0.01
1.2 0.20 0.50 0.55 1.00 0.10 1.18 -0.01 0.03
1.1 0.21 0.55 0.63 1.14 0.11 1.20 -0.03 0.07
1.0 0.22 0.61 0.74 1.35 0.13 1.24 -0.07 0.13
0.9 0.23 0.68 0.89 1.62 0.15 1.28 -0.15 0.19
0.8 0.25 0.76 1.11 2.01 0.18 1.35 -0.29 0.24
0.7 0.27 0.87 1.40 2.55 0.22 1.41 -0.49 0.30
0.6 0.30 0.96 1.78 3.24 0.27 1.49 -0.77 0.33
0.5 0.35 1.05 2.29 4.20 0.34 1.56 -1.19 0.36
0.4 0.38 1.11 2.71 5.12 0.40 1.66 -1.49 0.38

Panel B: γ = 5

Key indicators
κ Vol SR Turnover TC (%) α β SNW PNW

1.9 0.18 0.35 0.37 0.65 0.06 1.11 0.00 0.00
1.8 0.18 0.36 0.38 0.66 0.07 1.11 0.00 0.00
1.7 0.18 0.36 0.38 0.67 0.07 1.11 0.00 0.00
1.6 0.18 0.37 0.39 0.69 0.07 1.11 0.00 0.00
1.5 0.19 0.37 0.40 0.71 0.07 1.11 0.00 0.00
1.4 0.19 0.39 0.42 0.74 0.07 1.11 0.00 0.00
1.3 0.19 0.40 0.44 0.79 0.07 1.11 0.00 0.01
1.2 0.19 0.42 0.48 0.85 0.08 1.10 -0.01 0.02
1.1 0.19 0.44 0.53 0.94 0.08 1.10 -0.02 0.05
1.0 0.19 0.47 0.58 1.05 0.09 1.09 -0.05 0.09
0.9 0.19 0.50 0.67 1.21 0.09 1.07 -0.09 0.15
0.8 0.19 0.51 0.75 1.38 0.10 1.06 -0.14 0.20
0.7 0.18 0.52 0.84 1.58 0.10 1.04 -0.21 0.22
0.6 0.19 0.53 0.88 1.68 0.10 1.04 -0.25 0.24

Table 9: Sensitivity to changes in the bindingness of the leverage constraint. This table
displays the results for all key indicators based on the double characteristic portfolio policy BTM-MEQ when varying
the intensity of the leverage constraint. We fixed δT = N−κT for κ ∈ (0.4, 0.5, . . . , 1.9). The cases κ = 0.4 and κ = 0.6
are equivalent to the unconstrained policies for γ = 1 and γ = 5 respectively. A list of all abbreviations can be found in
Appendix B. Bold figures indicate a statistically higher Sharpe ratio at a 10% confidence level, compared to the equally
weighted benchmark.
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the two bounds of Lemma 2.1.14 As in the previous subsection, we proceed with the policies
based on size and book-to-market. We provide the results for two levels of risk aversion (γ = 1
and γ = 5). The figures do not exactly converge to those of the equally-weighted benchmark
because for some stocks, one of the attributes MEQ or BTM was not available, and these stocks
were therefore excluded from the optimization. In this case they were therefore excluded from
the optimization scheme. As expected, the turnover, transaction costs, sum and proportion of
negative weights decrease as the constraint becomes tighter (i.e. when κ increases). Further,
the effect is more pronounced for γ = 1.

In the case of low risk aversion (γ = 1), both the Sharpe ratio and the volatility strongly
decrease with κ. In contrast, in case of moderate risk aversion, only the Sharpe ratio displays
a monotonous (decreasing) pattern (both the volatility and beta remain nearly constant). For
both panels, subtracting transaction costs to the Sharpe ratio only marginally affects these
conclusions. In Panel A, we find that for κ = 1.3, the policies are close to a long-only policy
(less than 1% of shortsales) and the Sharpe ratio raises to 0.46, from 0.37 when κ = 1.9 (highly
constrained program). Fine-tuning the constraint therefore allows to keep very low leverage
while improving the risk-adjusted potential of the portfolio.

4.4 Factor tilts of different portfolio policies

When choosing a particular firm attribute over all others, the investor explicitly suggests that
this attribute, or the underlying risk factor, is (at least to him) an important driver of returns
in the cross-section. Consequently it seems reasonable that he expects to obtain a particular
exposure to a factor related to this attribute. In this section, we focus our analysis on the size
exposure (linked to market equity) and to the growth/value exposure (proxied by discrepancies
in the book-to-market characteristic). The reason for this is that these two indicators are related
to the ubiquitous Small-Minus-Big (SMB) and High-Minus-Low (HML) factors of Fama and
French (1992) which are by now well known by investors. In order to quantify the exposures,
we proceed as in Brandt et al. (2009) and compute the average exposures as

ESMB∗ = 1
T

T∑
t=1

eMEQ
t , EBTM∗ = 1

T

T∑
t=1

eBTMt , (8)

where eMEQ
t = w′tx

MEQ
t (resp. eBTMt = w′tx

BTM
t ) is the time-t weighted average of the market

equity (resp. book-to-market) firm characteristic. While the scores in (8) have little to do
with the canonical loadings on SMB and HML, it is clear that they will highlight similar style
exposures: a positive ESMB∗ will denote a portfolio tilted towards large cap stocks and a positive
EHML∗ will correspond to a value portfolio. Accordingly, it is only a small abuse of language to
consider that the expression of (8) corresponds to factor exposures. For this reason, we mark
the resulting factors of (8) with a star to indicate this semantic interference. Table 10 shows

14Please note that we do not report results for κ < 0.4 in Panel A and κ < 0.6 in Panel B because the values do not
change beyond these thresholds.
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the exposures for all single characteristic portfolios and for the the double characteristic policy
relying on BTM-MEQ.

Panel A: Unconstrained Policies

Characteristic portfolio policy

γ MEQ BTM DIY LEV MOM VAR ROA CFA GMV ERV CUE AGR BTM-
MEQ

SM
B
* 1 -9.60 -1.22 0.19 -1.08 -0.84 -0.55 -1.45 -0.65 -0.42 -0.47 0.07 -1.82 -6.45

5 -0.22 -0.08 0.08 -0.07 -0.03 0.06 -0.02 0.02 -0.08 0.04 -0.03 -0.10 0.41
10 0.95 0.06 0.07 0.06 0.07 0.14 0.16 0.11 -0.04 0.11 -0.05 0.11 1.27

H
M
L*

1 1.36 7.37 0.38 3.99 1.94 -0.38 1.82 -0.12 0.83 -0.57 0.05 1.65 5.01
5 0.05 0.56 0.30 0.20 0.06 0.10 0.02 -0.25 0.16 0.00 -0.02 0.11 0.81
10 -0.12 -0.29 0.29 -0.27 -0.17 0.16 -0.21 -0.27 0.08 0.07 -0.03 -0.08 0.28

Panel B: Constrained Policies

Characteristic portfolio policy

γ MEQ BTM DIY LEV MOM VAR ROA CFA GMV ERV CUE AGR BTM-
MEQ

SM
B
* 1 -0.94 -0.17 0.04 -0.10 -0.08 -0.04 -0.13 -0.06 -0.03 -0.06 0.00 -0.13 -0.66

5 -0.12 -0.06 0.04 -0.05 -0.01 0.02 -0.01 0.00 -0.02 0.00 0.00 -0.05 -0.11
10 0.62 0.06 0.04 0.05 0.05 0.05 0.08 0.04 0.00 0.04 -0.01 0.07 0.49

H
M
L*

1 0.13 0.94 0.10 0.40 0.19 -0.02 0.15 0.01 0.06 -0.08 0.00 0.11 0.77
5 0.03 0.40 0.13 0.14 0.02 0.04 0.01 -0.03 0.04 -0.02 -0.01 0.06 0.26
10 -0.08 -0.27 0.15 -0.23 -0.12 0.05 -0.09 -0.05 0.01 0.03 -0.01 -0.05 -0.13

Table 10: Factor exposures of different characteristics-based policies. This table displays the
average factor tilting of 13 portfolio policies with respect to the proxies of the Fama and French (1992) risk factors HML
and SMB for different risk aversions. The calibration period is τ = 10 years. A list of all abbreviations can be found in
Appendix B.

A first striking result is that the sign of the exposure may vary with the risk aversion when
staying with the same firm characteristic. For instance, both for constrained and unconstrained
policies, the exposure to SMB* is negative (with the exception of DIY and CUE based policies)
when γ = 1. This can be explained by the fact that small cap stocks are known to outperform
large cap stocks in the long run (Fama and French (1992)). However, small cap stocks are also
more volatile. Consequently, when risk aversion is low and the focus is on delivering return,
the exposure to SMB* should be negative (i.e. small cap stocks should have larger weights,
everything else equal). But when risk aversion is high and the focus is on minimizing risk, then
the exposure to SMB* should be positive. For γ = 1, we observe that the constrained and
unconstrained policies relying on the MEQ attribute have the lowest SMB* exposure and that
the policies relying on BTM have the highest HML* exposure. These rankings are however
altered for higher levels of risk aversion. For γ = 1, we also find that the policies based on both
MEQ and BTM have large amplitudes in their exposures to SMB* and HML*.

The average values of the Table 10 can be complemented by a dynamic analysis of the
relative importance given to each characteristic. We consider the double characteristic policy
based on BTM-MEQ and monitor the values of eMEQ

t and eBTMt over time. Figure 3 shows the

25



corresponding values when plotting eMEQ
t and eBTMt over time. We consider four cases: with

and without the constraint as well as low (γ = 1) and intermediate risk aversion (γ = 5).
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Figure 3: Time-series of eMEQ
t and eBTMt . This figure plots the time-series of the values of θT for the

policies based on MEQ and BTM. On the left graph, we display the coefficient for the market capitalization (MEQ)
characteristic and one the right graph, the coefficient for the book-to-market (BTM) characteristic. The unconstrained
policies are plotted in black and the constrained ones in grey. We use thick lines for γ = 1, and dashed lines for γ = 5.
The calibration sample size is τ = 10.

When γ = 1 and the policy is unconstrained, we acknowledge a strong variation for both
coefficients SMB* and HML*. When γ = 5, the variations follow the same patterns, but the
trajectory is much smoother. The constrained case with γ = 1 is the most consistent of all
since there is no variation in the sign of the score (negative for SMB* and positive for HML*).
The negative exposures to HML* of the policies with intermediate risk aversion from 2000
onwards stand in contrast to Figure 12.1 in Ilmanen (2011). In this case the value premium
in the US equity market is positive between 2000 and 2010. These negative exposures stem
from the mitigated performance of value stocks compared to their growth counterparts in the
1990s and during the collapse of the internet bubble. We must therefore acknowledge that even
though constrained policies are less subjects to variations in signs of risk premia associated to
characteristics, they are not unconditionally immunized against the impacts of these shifts.

Overall, the smoothed patterns of constrained loadings are a gage of consistency: a rational
investor does not expect his portfolio’s exposures to the underlying firm characteristics (and,
if they exist, to the corresponding risk premia) to evolve abruptly. This would only underline
a lack of coherence of the policy. Accordingly, the constraint (or a higher risk aversion) is an
efficient tool to ensure consistent risk exposures through time.

5 Conclusion

In this article we address several so far unsolved shortcomings of characteristics-based portfolio
optimization. By introducing a novel leverage constraint into the modified framework of Brandt
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et al. (2009), we present an approach which aims at reducing the dispersion of weights around an
agnostic prior: the equally-weighted portfolio. Based on an empirical analysis from 1969 to 2013
we find that portfolio policies including our constraint result in significantly lower short sales
compared to the unconstrained policies. This makes constrained policies easier to implement,
especially for investors with leverage constraints. Further, we observe that our constraint
leads to a significant reduction in discrepancy across characteristics which lowers the odds of
abnormal underperformance (very low or negative Sharpe ratios) subsequent to a poor choice of
characteristics. With respect to variations in risk aversion it turns out that constrained policies
seem less volatile and more robust. This stems from the fact that the discrepancies in Sharpe
ratio are lowered when varying from high to low risk aversion. This is typical useful because
the quantification of an investor’s risk aversion is usually not straightforward. We further find
that constrained policies have much lower levels of turnover and transaction costs compared
to their unconstrained counterparts. Lastly, constraints are also advantageous because they
imply exposures to characteristics (and the possibly related risk factors) that do not evolve too
abruptly.

With regard to the characteristics which seem to generate value for the investor, we have
worked with a set of 12 firm characteristics, thereby broadening the canonical size-value-
momentum paradigm. In fact, while we acknowledge that market equity and book-to-market
indicators do yield above average Sharpe ratios, we do not find that past returns are likely to add
any further value. Moreover, this latter attribute is unstable and often generates high turnover.
According to our findings, firm characteristics which should be considered by investors include:
dividend yields, variance of returns, variance of earnings and asset growth. With respect to the
number of possible characteristics which can be plugged into the optimization scheme, we find
that beyond two characteristics, we cannot find any significant improvements.

Lastly, our approach is meant to remain flexible and the intensity of the constraint can
be adjusted to fit to the investor’s leverage target or to his risk budget. In a nutshell, this
article enhances the applicability of characteristics-based portfolio choice and broadens the
understanding of the underlying numerical optimization.
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A Data

We proceed in several steps. First, we restrict our sample to all companies of the North America
Compustat database which have at least 10 years of business activity. Based on this restriction,
we calculate the firm characteristics at the end of June each year from 1964 to 2013 where the
first years are solely used to calculate lagged returns. Hence, the final firm characteristics are
reported from 1967 onwards. We consider common / ordinary security types only (tpci = 0) to
avoid influences of issue-specific attributes. We use annual data for fundamentals and monthly
data for prices and total return factors.

Following Brandt et al. (2009) we calculate the company’s book equity as total assets minus
total liabilities plus deferred taxes and investment tax credit minus the preferred stock value.
Further, a company’s market equity (MEQ) is determined as the price per share times the
number of common shares outstanding. The book-to-market ratio BTM is defined as the
book equity as defined above divided by the market equity. We calculate the current dividend
yield DIY as total dividends divided by the number of common shares outstanding times the
share price. The computation of leverage (LEV ) follows Bhandari (1988): the leverage of a
companyias the difference of total assets and the book value of equity divided by market equity.
Momentum (MOM ) is based on returns from t-12 months to t-2 months and relies on price data
only. In contrast, we evaluate the variance of the returns (VAR) based on total returns over the
past 60 months. Return on assets (ROA) is seen as the ratio of income before extraordinary
items and total assets. The firm’s cash-flow over assets (CFA) is calculated as net income plus
depreciation minus the change in net working capital minus capital expenditures divided by the
firm’s total assets. GMV is the five year absolute variation in the firm’s gross margin, whereas
the margin is calculated as revenue minus costs of goods sold divided by total sales. Finally,
we introduce earnings volatility (ERV ) as the standard deviation of the firm’s return-on-assets
over the past 20 prior quarters. Both the annual change in earnings (CUE) and asset growth
(AGR) are computed as in Hand and Green (2011): simple growth rate of the change in net
income or total assets, respectively.

Lastly, we exclude negative data values for MEQ, BTM, DIY, LEV and VAR. After the
construction of all firm characteristics, we eliminate 20% of the firms with the smallest market
equity and all values which lie five standard deviations above (or below) the cross-sectional
average each year.
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B Abbreviations

Firm characteristics
AGR Year-over-year asset growth
BTM Book-to-market
CFA Cash-flow over assets
CUE Annual change in earnings
DIY Current dividend yield
ERV Earnings volatility
GMV Absolute annual variation in gross-margin
LEV Leverage-ratio
MEQ Market equity
MOM Momentum return
ROA Return on assets
VAR Return variance

Key indicators
α Jensen’s alpha based on a CAPM regression
β Market beta based on a CAPM regression
PNW Proportion of negative weights
SNW Sum of negative weights
SR Sharpe ratio
TC (%) Transaction costs (in percent)
Turn Portfolio turnover
Vol Portfolio volatility

Input parameters
γ Risk aversion parameter
δT Intensity of the leverage constraint
τ Estimation sample size in years

Table 11: Abbreviations of firm characteristics, key indicators and input parameters. The
table shows the definition of the used abbreviations for all firm characteristics, key indicators and input parameters within
the article. The firm characteristics show the abbreviation of all 12 individual firm characteristics that were regarded
in our analysis. A more detailed description can be found in Appendix A. The group of key indicators consist of the
measures which are used to evaluate the performance and characteristics of the constrained and unconstrained portfolio
policies. A detailed description of all key indicators can be found in Section 3.2.1. Finally, we specify input parameters
as those variables which are varied for the understanding of the input sensitivities of the optimization algorithm.
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C Proof of Proposition 2.1

We recall the following matrix notations: wT and rt+1 are the (N × 1) vectors corresponding
to wi,T and ri,t+1 respectively and xt is the (N × F ) concatenation of the xi,t vectors. The
Lagrangian associated to the problem (4) is

G(θT ) = 1
T

T−1∑
t=T−τ

NT∑
i=1

(w̄i,t + θ′Txi,t) ri,t+1 −
γ

2T

T−1∑
t=T−τ

NT∑
i=1

(w̄i,t + θ′Txi,t) ri,t+1

2

− λ (θ′Tx′TxTθT − δT )

= 1
T

T−1∑
t=T−τ

(w′t + θ′Tx′t) rt+1 −
γ

2T

T−1∑
t=T−τ

(w̄′t + θ′Tx′t) rt+1r
′
t+1 (xtθT + w̄t)

− λ (θ′Tx′TxTθT − δT )

and hence,

∂G

∂θT
(θT ) = 1

T

T−1∑
t=T−τ

x′trt+1 −
γ

T

T−1∑
t=T−τ

(
x′trt+1r

′
t+1w̄t + x′trt+1r

′
t+1xtθT

)
− 2λx′TxTθT ,

so that the first order condition implies that

θT =
2λTx′TxT + γ

T−1∑
t=T−τ

x′trt+1r
′
t+1xt

−1

×

 T−1∑
t=T−τ

x′trt+1 − γ
T−1∑
t=T−τ

x′trt+1r
′
t+1w̄t

 .
We underline that the conditions τ > FT and NT > FT ensure that the inverse matrix is well-
defined. The remaining degree of freedom, λ, is chosen such that condition (3) is satisfied. The
second order condition straightforwardly implies that the solution is indeed a maximum point.
If δT is very large, then the problem is unconstrained. If the problem is indeed constrained,
then as λ increases to infinity, θ′Tx′TxTθT will continuously (but not necessarily monotonously)
decrease to zero and any value δT can be reached (this can be formally shown using the strictly
positive (since NT > FT ) eigenvalues of x′TxT , as in Appendix A in Coqueret (2014)).
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D Proof of Lemma 2.1

We consider two opposite extreme configurations for the distribution of the yiT . In the first
scenario, there is one negative weight, y1T = −

√
(NT − 1)δT/NT and NT − 1 positive weights

yjT =
√
δT/(NT (NT − 1)) for j = 2, . . . , NT . In this case, the minimum is equal to y1T . This

sequence satisfies the two equalities

NT∑
i=1

yiT = 0 and
NT∑
i=1

y2
iT = δT .

Under these two constraints, we show below that it is impossible to find a minimum which is
smaller than −

√
(NT − 1)δT/NT . We note S+ for the subset of indices j such that yjT > 0 and

yT− for the minimum value of yT . It must therefore hold that
∑
j∈S+

yjT ≥ −yT− and y2
T− ≤ δT −

∑
j∈S+

y2
jT . (9)

Since we want yT− to be as large as possible, we want to allocate the positive weights in the
most efficient manner (so that their L2-norm is minimal). The solution of the classical linearly
constrained quadratic program

A′(AA′)−1b =
{
argmin

x
x′x : Ax = b,AA′ � 0

}

implies that under the first inequality in (9), ∑j∈S+ y
2
jT ≥ y2

T−/card(S+). This is obtained
by taking A = [1 . . . 1] (row vector with length card(S+)) and b = −yT−. From the second
inequality in (9), we infer

y2
T− ≤

δT
1 + 1/card(S+) , (10)

which is maximal for card(S+) = NT −1 (i.e., apart for its minimum value, yT has only positive
values). Moreover, in (10), the equality is reached when all positive weights have the same value.
Accordingly, the minimal value for yT− = −

√
(NT − 1)δT/NT .

The second scenario is the opposite situation where y1T =
√

(NT − 1)δT/NT and yjT =
−
√
δT/(NT (NT − 1)) for j = 2, . . . , NT . In this case, the minima are the yjT for j ≥ 2 and they

can be proven to be maximal using the same technique as in the first case.
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